Forklift / Stationary Battery Solutions 2014 10 - 20 kWh useable stored power comparisons for electric forklifts and stationary battery storage. Nominal system voltage is 48 Vdc. All prices include estimated/average, or included shipping costs, but not sales taxes. Life time costs do not include effects of sales tax, charging / discharging efficiencies / losses, which increase real life time storage costs. | Battery Type
Application
Manufacture
Notes | A-h | Retail
Price | Weight
| Volume in**3 | Average
Dis-
charge
voltage | Depth
of
Discharge
(D.O.D.) | Available
Energy
at DOD
kWh | Life
Time
Cycles | Up Front
Cost per
1 kWh
Stored | Life Time
Cost of
1 kWh
Stored | Life Time
Cost %
of STD.
Case | |---|-----|-----------------|-------------|--------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------|---|---|--| | Flooded Lead-Acid
Forklift / Stationary
MFG: GB
STD. for comparison. | 595 | \$5,176 | 2,494 | 20,378 | 46 | 70% | 19.2 | 1,500 | \$270. | \$0.180 | 100% | | LiFePO4, Li-Ion
Stationary
MFG: Balqon/Winston
16 cells, \$450 shipping | 400 | \$7,490 | 480 | 7,493 | 48 | 80% | 15.4 | 2,200 | \$488 | 0.222 | 123% | | LiFePO4, Li-Ion
Forklift replacement
MFG: Balqon/Winston
16 cells, \$450 shipping
Add \$1,500 for C.W. | 400 | \$8,990 | 480 | 7,493 | 48 | 80% | 15.4 | 2,200 | \$585 | 0.266 | 148% | | Nickel-Iron
Forklift / Stationary
MFG: Iron-Edison
40 Cells, \$800 shipping
10 year life cycle | 400 | \$16,000 | 2,024 | 41,774 | 48 | 70% | 13.4 | 3,600 | \$1,190 | \$0.331 | 184% | | Nickel-Iron
Forklift / Stationary
MFG: Iron-Edison
40 Cells, \$800 shipping
30 year life cycle
\$2,000 for 2X
electrolyte Changes | 400 | \$18,000 | 2,024 | 41,774 | 48 | 70% | 13.4 | 10,800 | \$1,190 | \$0.124 | 68.9% | Currently there is no way to beat lowest up-front cost of a Lead acid battery for forklifts / stationary battery storage applications. The life time cost of LiFePO4 batteries for stationary applications at 23% higher may still be as cost effective as Lead acid battery in real life applications. Lead acid batteries have a memory effect, Li-Ion batteries have little memory effect. Most real life situation do not involve full cycles. So under real life applications Li-Ion batteries will typically have more cycles than expected, so in real life they will be cheaper in the long run. Only Nickel-Iron batteries kept in service for 30 years can beat Lead acid batteries for life time cost of stored power. ## Forklift / Stationary Battery Possible Future Solutions Properties same as page #1. | Battery Type
Application
Manufacture
Notes | A-h | Retail
Price | Weight # | Volume in**3 | Average
Dis-
charge
Voltage | Depth
of
Discharge
(D.O.D.) | Available
Energy
at DOD
kWh | Life
Time
Cycles | Up Front
Cost per
1 kWh
Stored | Life Time
Cost of
1 kWh
Stored | Life Time
Cost %
of STD.
Case | |---|-----|-----------------|----------|--------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------|---|---|--| | Flooded Lead-Acid
Forklift / Stationary
MFG: GB
STD. for comparison. | 595 | \$5,176 | 2,494 | 20,378 | 46 | 70% | 19.2 | 1,500 | \$270 | \$0.180 | 100% | | LiFePO4, Li-Ion
Stationary
MFG: Future Company
16 cells, \$200 each.
\$450 shipping | 400 | \$3,650 | 480 | 7,493 | 48 | 80% | 15.4 | 2,200 | \$238 | 0.108 | 60.0% | | LiFePO4, Li-Ion
Forklift replacement
MFG: Future Company
16 cells, \$200 each.
\$450 shipping
Add \$1,500 for C.W. | 400 | \$5,150 | 480 | 7,493 | 48 | 80% | 15.4 | 2,200 | \$335 | 0.152 | 84.6% | | Nickel-Iron
Forklift / Stationary
MFG: Future Company
40 Cells, \$240 each.
\$800 shipping
10 year life cycle | 400 | \$10,400 | 2,024 | 30,000 | 48 | 70% | 13.4 | 3,600 | \$774 | \$0.215 | 119% | | Nickel-Iron
Forklift / Stationary
MFG: Future Company
40 Cells, \$240 each.
\$800 shipping
30 year life cycle
\$2,000 for 2X
electrolyte Changes | 400 | \$12,400 | 2,024 | 30,000 | 48 | 70% | 13.4 | 10,800 | \$774 | \$0.085 | 47.4% | Conclusion: Some opportunity exists for Li-Ion batteries where weight is not a concern, volume is a small concern, and price is the biggest issue. A 400 A-h, Li-Ion battery with 2,200 cycles at 80% DOD selling for \$200 would take over the forklift and stationary battery market, wiping out large Lead acid battery production. Only an improved Nickel-Iron battery with a cost of \$240 per 400 A-h cell would compete, and then only for 30 year life projects.